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Abstract

Large-eddy simulations of a turbulent boundary layer with Re6. = 3500 were performed
with two grid resolutions. The computations were continued for sufficient time to obtain
frequency spectra with resolved frequencies that correspond to the most important structural
frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both
resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with
the wall-pressure fluctuations revealed similar behavior for both simulations. The primary
differences were associated with the lack of resolution of the high-frequency data in the
coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for
averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent
the spanwise coherence of the cross-spectral density.

1 Introduction

Reduced levels of aircraft interior cabin noise are desirable for both comfort and health-related

reasons. Blake [1] notes that a turbulent boundary layer on the fuselage at locations forward of

the engines dominates the excitation of the fuselage structure. Boeing 737 flight experiments by

Wilby and Gloyna [2] confirm the contributions of turbulent boundary-layer pressure fluctuations

to the noise level inside the aircraft cabin. Clever use of fuselage materials and arrangement

of the frames and stringers provides some opportunity for reducing the amount of vibration

transmitted to the interior cabin. However, to design such a structure, detailed information

with regard to wail-pressure fluctuations in the external turbulent boundary layer is required.

The finite size of physical transducers accounts for much of the difficulty in obtaining the

desired measurements. Because the pressure field is convected with the flow, a lack of resolution

in space also limits the effective temporal resolution of the signal. The speed at which a pressure

disturbance convects downstream is characterized by the convection velocity Uc, which tends to

be a weak function of both the frequency of the pressure signal f and the streamwise separation

distance _. The important link between the time and space resolutions of the pressure has

been long appreciated. Corcos [3] proposed a correction to the pressure statistics based on a
model of the pressure field in which the coherence function of the cross-spectral density was

dependent upon similarity variables. Further support for his model of the wall-pressure field

was presented in Ref. [4]. Also in Ref. [4], Corcos argued that terms that are quadratic in the

turbulent-fluctuation velocities are largely responsible for the wall-pressure fluctuations. A direct

numerical simulation (DN$) of turbulent channel flow by Kim [5] confirmed the importance of
the nonlinear source terms.

Using the same database as Kim [5], Choi and Moin [6] carefully analyzed various corre-
lations of the wall-pressure fluctuations. They showed that the low-frequency data was most

appropriately scaled with outer flow variables and that the high-frequency data scaled best with

the wall-layer or inner flow, variables. Only at high wavenumbers and frequencies did they ob-

serve Corcos's proposed similarity of the cross-spectral density. In addition, Choi and Moin [6]

calculated convection velocities as functions of frequency, wavenumber, and separation distance.

Large structures convected with a more uniform velocity than did smaller structures.

Extensive measurements by Schewe [7] with five different sizes of pressure transducers suggest

the validity of the Corcos correction for wd/Uc < 8, where w = 2rf and d is the diameter of

the pressure transducer. Schewe found that the Corcos-corrected values of the root-mean-square

(rms) wall pressure were obtained with probes that have diameters as large as approximately



160 viscouswallunits.For largerprobes,he found thatthe correctionsuggestedby Corcos was

too small.However, Schewe pointsout that the lackof successof the correctionforvery large

probes could be associatedwith the data that Corcos used and not the form of the model per
8e.

Flighttestsby Efimtsov [8]at a varietyof Mach numbers (allwith zero pressuregradi-

ent),support the generalform of the Corcos [3,4] approximations,although the detailsof the

streamwiseand spanwisecoherencefunctionsneed tobe determined forthreeseparatefrequency

ranges.

Farabee and CasareUa [9]performed an extensivesetof measurements thatprovideinsight

intothe spectralfeaturesof turbulentwall-pressurefluctuations.Although the measurements

were made at relativelylow Reynolds numbers, theiruse of multipleflowvelocitiesproduced

a Reynolds-number range of nearlya factorof 2 in the same facility.Their measurements

clearlyidentifiedthree spectralregions. A low-frequencyregime displayed0J2 behavior. A

mid-frequency range indicatedthat the spectraldensitydata forallReynolds numbers tested

collapsedto a singlecurve when nondimensionalizedwith the frictionvelocity,the wallshear

stress,and the boundary-layerthickness.In thehigh-frequencyrange,innerwallvariablescalings

collapsethe data at allReynolds numbers onto a singlecurve.Plotsofthe coherencefunctionof

the frequency-streamwise-separationcross-spectraldensityversusthe phase ofthecross-spectral

densityshowed similarityat highfrequencies,aswould be expected from the Corcos model [3,4].

However, a low-frequencycutoffalsoexisted;significantdeviationsfrom the similaritycurve

were observed below the cutofffrequency.The variationsof the convectionvelocitywith both

frequencyand separationdistancewere investigated.Quantitativedifferencesin the convection

velocitywith the resultsof the channel-flowcalculationsof Choi and Moin [6]were attributed

to the uniquefeaturesof channelflows.In particular,Farabee and CasareUa [9]contended that

the low-frequencydata are particularlysensitiveto turbulentstructuresin the outerportionof

the boundary layerand thatthesestructuresare significantlydifferentbetween boundary layers
and channelflows.

A setofturbulent-channel-flowlarge-eddy-simulation(LES) calculationsperformed by Chang,

Abraham, and Piomelli[10]suggeststhe feasibilityof obtainingusefulwall-pressurefluctuation

data in the contextof an LES calculation.In spiteof the use of a model forthe small scales

ofmotion, plotsof the spectraldensityand contoursof the frequency-streamwise-wavenumber

spectrawere quitesimilarto resultsobtainedwith DNS, especiallyforthe lowerfrequencies.

The currentwork involvesan LES ofa zero-pressure-gradientboundary layerwitha turbulent

Reynolds number thatisfivetimes greaterthan thatused in the previouscalculationsofspace-

time wail-pressurestatistics.The major objectiveofthiswork isto obtainstatisticsofthe wall-

pressurefluctuationsin a frequencyrange thatisrelevantto the dominant structuralvibration

modes ofan aircraftfuselage.

2 Mathematical Considerations

2.1 The Large-Eddy Simulation

LES is used to compute the large scales of fiuid motion (i.e., the resolved scales) in the boundary

layer; the small scales of motion (i.e., the subgrid scales (SGS)) are modeled. A filtering operation



distinguishes between the resolved scales and the SGS such that

_(x) -- f q(x')G(x, x') dx' (1)
D

where q represents a flow quantity, x is the position vector, D represents the domain of the flow,

G is the filtering function, and x _ is a dummy variable of integration. The overbar designates

a filtered (resolved) quantity. The incompressible Navier-Stokes equations are made nondimen-

sional, with the displacement thickness _* as the length scale and the free-stream velocity U0 as

the velocity scale. The pressure p has been normalized with pU2o, where p is the density; the

displacement-thickness Reynolds number Re6. is Uo_*/v, where v is the kinematic viscosity. In

Cartesian coordinates, the velocity in a general coordinate direction xi is ul. With the use of

the Einstein summation convention, the filtered continuity equation is

0x-- (2)

and the filtered momentum equations are

_
+ Oz¢

where the SGS stress tensor is defined as

O_ Orij + 1 02_i (3)
Oxi Oxj Re6. OxjOxj

_j _ UiU j -- UiU j (4)

No-slip and impermeability conditions are imposed at the wall; the disturbances decay asymptot-

ically in the far field. The Lilly [11] formulation of the dynamic SGS model of Germano, PiomeUi,

Moin, and Cabot [12] was used in conjunction with a Fourier cutoff filter in the streamwise and

spanwise directions. The model test filter was twice as large as the grid filter. No filtering was

performed in the wall-normal direction. The implementation of the model involved the redef-

inition of the pressure variable to include the trace of the SGS stress tensor vkk. Because rkk

vanishes at the wall, the wall pressure retains its original meaning.

The need for a lengthy time series to obtain adequate frequency resolution mandates the very

efficient solution of the flow equations. A Fourier-Chebyshev pseudospectral collocation scheme

is used to spatially discretize the skew-symmetric form of Eqs. (2) and (3). A semi-implicit

numerical time-advancement scheme, in combination with the fractional time-step method de-

scribed in Zang and Hussaini [13], integrates the system forward in time. Chang, Abraham,

and Piomelli [10] indicate the importance of dealiasing in the Fourier directions for these cal-

culations; hence, this practice is continued here. However, unless otherwise specified, grid sizes

mentioned later refer to the full grid used for the computation of the nonlinear terms. The

use of Fourier expansions in the strearnwise direction obviates the need for prescribed inflow

conditions; however, because turbulent boundary layers are not parallel and homogeneous, the

implied periodicity of the Fourier expansions necessitates special treatment of the equations. In

this work, the additional treatment involves casting the equations in non-Cartesian "similarity"

coordinates, as described in detail by Spalart and Leonard [14] and Spalart [15]. This approach

is summarized below.



2.2 Similarity Coordinates

A Cartesian coordinate system in which x, y, and z represent the streamwise, spanwise, and

wall-normal directions is modified, first by the introduction of a new coordinate (, which replaces

z as the w_ll-normM variable. Near the wM1, lines of constant _ are approximately parallel to the

wall and correspond to lines of constant wall-normal coordinate z. Away from the wall region,

lines of constant _ are approximately parallel to the turbulent boundary-layer edge. The slope

of the constant ( lines with respect to the wall is denoted by S. The formal transformation of

the Cartesian coordinates to the non-Cartesian system with an associated change of dependent

variables, such that the form of the transport terms in the Navier-Stokes equations remains

unchanged, is discussed in detail by Spalart [15].

The resulting set of equations is further modified by noting that the boundary-layer thickness,

the mean-flow profiles, and the turbulent statistics vary slowly with downstream location. We

can isolate this slow dependence by decomposition of the streamwise velocity U as

U(x, V, _, t) = Urn(x, _) + A(_:, _)u(x, V, _, t) (5)

where U,,_ is the mean-velocity profile at location 3: and A is an "amplitude function" that is

proportional to the rms of the fluctuations. The quantity u has zero mean and its rms value is

independent of streamwise location; hence, the imposition of streaanwise periodicity, although

not fully justified, does not flagrantly violate the physics. Differentiation of Eq. (5) with respect
to the streamwise direction provides

OU OU,,_ AOU OA= 0--7-+ + (6)

The slow variation of the basic flow properties can be modeled by a dependence on a "slow"

streamwise coordinate X. On the other hand, the turbulent motions involve fluctuations on

much smaller scales. The "fast" streaanwise coordinate on which the turbulent motions vary

retains the designation x. Hence, with respect to Eq. (6), the streamwise variations of U,n

mid A are slow and can be written as OUm/OX and OA/OX, respectively; the variation of

occurs on the fast scale. Similar decompositions are made for the other flow components. The

quantity A scales with the friction velocity _, - _ (where _'to is the wall shear stress),

and this quantity goes to 0 as the Reynolds number tends to infinity. Appropriate scaling of

allquantitiesand retentionof terms up to O((u_./Uo)2)produces a modified set of equations

with additionalunknown quantitiesthat involvethe coordinate-lineslope S and derivatives

of statisticalquantitieswith respectto the slow scaleX. The modificationsto the equations

are easilyincorporatedintothe basic solutionscheme once the new unknown quantitiesare

determined.

To specifythese unknown quantities,a referencecalculationisperformed where standard

high-Reynolds-number turbulencecorrelationsand the integralmomentum equationareused to

findvaluesforthe unknown quantities.The appropriatecorrelationsare discussedby Spalart

and Leonard [14].The resultsof the referencecalculationprovidethe necessaryturbulentsta-

tisticalquantitiesat a singleupstream positionX0. These quantitiesare then used to perform a

backwards differencedifferentiationto obtainthe X derivativesinthe currentcalculation.This

procedureisdescribedby Spalart[15].

The use of the similaritycoordinatespermits the calculationto be performed in a stream-

wise periodicdomain that resolvesthe turbulentfluctuationson the fastscalex but has the
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constant turbulent statistical quantities associated with location X. The calculation is useful

for the determination of the desired statistical quantities and any flow physics that occur on the
turbulent length scale.

2.3 Scalings

The time sample for the calculation was chosen to capture frequencies that would be relevant for

the important structural vibration modes of an aircraft fuselage in flight. The targeted frequency

range was between 100 and 2000 Hz. Previous works [6, 9, 10] indicate that the appropriate

nondimensional frequency variable that collapses low-frequency data over a large Reynolds-

number range is proportional to the product of frequency and a boundary-layer thickness divided

by the friction velocity. The displacement thickness _* will be used as the boundary-layer

thickness. To obtain appropriate flight values of _" and u_, reference flight conditions were

chosen from the Boeing 737 experiments of Wilby and Gloyna [2]. The free-stream speed U0

was 241 m/s and the displacement thickness of the turbulent boundary layer was about 1.2

cm. At the flight altitude, these conditions correspond to a boundary layer with a Reynolds

number Re_ = 105350. For the reference conditions, the turbulent flow correlation Eq. (21.5)

of Schlichting [16] gives ur/Uo = 0.027. Hence, the corresponding target frequency range of the

simulations is 1.16 _< w_*/u.r <_ 23.17. The length of the time sample required in the simulation is

easily obtained after _* and u_ have been determined at the Reynolds number of the simulation.

2.4 Flow Parameters

The calculations are performed for an incompressible flat-plate boundary layer with a Reynolds

number Re_ = 3500. The turbulent Reynolds number Rex = u_.$/u is approximately 1000 when

is chosen as the distance from the wall at which the the mean streamwise velocity is 0.99U0.

The reference flow that is used for backwards differencing is computed at Re_ = 2200. The

streamwise and spanwise domain lengths are Lx/$* = 44.88 and L_/_" = 14.28, respectively.

In terms of viscous length scales, Lxu_./u = 6409 and L_u_/u = 2040. Two-point streamwise

velocity correlations in the near-wall region decay to a few percent for correlation distances of

Lx/2; hence, the streamwise domain is sufficiently long for a turbulence simulation. Several

wall-layer streaks exist across the span. The spanwise length is determined by the need for a

sufficient decay in the spanwise wall-pressure correlation.

2.5 Statistics

The statistical quantities that will be presented include the wall-pressure mean square, skewness,

and flatness; the spatial coherence of the wa_l pressure correlations in both the streamwise and

spanwise directions; the one-dimensional (l-D) temporal spectrum; the two-dimensional (2-

D) temporal-streamwise-wavenumber spectrum; the coherence functions of the cross-spectral

density with streamwise and spanwise separations; and the convection velocity. These quantities
are described below.

The wall-pressure mean square, skewness, and flatness will all be similarly computed. The
mean square is

MS =< p2 > (7)



where p is the wall pressure and the angle brackets <> imply an average over an appropriate

sample. In addition to averaging over the time domain, because the streamwise and spanwise

directions are homogeneous, the average is also performed over both directions. The mean square

and the corresponding rms provide information with respect to the intensity of the pressure
fluctuations. The skewness is defined as

_:p3 >

< p2 (8)

and is a measure of the polarity of high-amplitude events. A Gaussian distribution of the wall

pressure results in a skewness of 0. The flatness is a measure of the importance of infrequent

high-amplitude events and is defined as

<p4>
< p2 >2 (9)

A Gaussian distribution has a flatness of 3. As the size of the averaging area of a pressure

transducer increases, the skewness and flatness approach their Gaussian limits [7].

The spatial correlations are most usefully defined in terms of their coherence function

R(_, ,_) = < p(z, y)p(z + _, y + V) > (10)
<p2 >

where x and y are arbitrary streamwise and spanwise coordinates in the computational domain

and _ and _ are the streamwise and spanwise separation distances. The spatial periodicity of the

flow restricts meaningful correlation distances to half of the streamwise and spanwise domain.

The correlations with separation distances in excess of the half-lengths are reflections of the

correlations with smaller separation distances.

The optimal sampling of temporal spectra requires the partition of the time-series data.

The total time sample of the computation is subdivided into 12 nonoverlapping subsections;

each subsection has a period 1/2T such that (1/2T)ur/_* = 2.81. This period corresponds

to a minimum frequency w&*/u_ = 2.24, which is slightly less than twice the minimum target

frequency. The 12 subsections are then linked to form 11 ensemble units such that the first unit

consists of the first and second subsections, the second unit consists of the second and third

subsections, and so on. Each ensemble unit contains a sequential time history with a period

Tu_/&* = 5.62 and a minimum frequency resolution w&*/ur = 1.12. The use of overlapping

ensemble units as described above is optimal, or very nearly so, in the sense that the smallest

spectral variance per data point is realized [17]. The variance of the spectral estimates are

reduced by the product of the fraction 9/11 and the number of averaging samples [17].

The spectra are determined with the use of Fourier transforms of the windowed wall-pressure

data; hence,

[ T Lz ]21
• (w, kx):C(l(_-_)_//d(t)p(z,y,t)exp(-iwt)exp(-ikxz)dxdtl ! (11)

where i = v/Z'] -, T is the time period, Lx is the domain length in the streamwise direction, kx

is the streamwise wavenumber, d is the windowing function for the time series, and C is the
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analyticcorrectionfactor for the windowing function as given by Hardin [18]:

27_
C=

T

fd2(t)dt
0

For the 2-D spectrum, the angle brackets imply an average over the spanwise direction.
data window

1 [1-c°s(T)]d(t) =

(12)

The

(13)

is that of Hann, as given in Ref. [17]. The streamwise periodicity of the raw data makes the

use of a data window in the z direction unnecessary. The use of an explicit, analytic correction

factor to account for the data windowing permits the use of Parseval's theorem

T Lx _ oo
1

0 0 --oo -oo

(14)

as an independent check of the validity of postprocessing computer codes. Parseval's theorem

is typically satisfied to within a few percent. In practice (because ¢_(kr,w) is symmetric about

w = 0), only w >_ 0 is considered, and the value of ¢(kx,w) is doubled (except for w = 0) to

preserve Parseval's equality. The 1-D temporal spectrum is easily computed by integration of

the 2-D spectrum; that is,

¢(w) = / 'I_(kr,w)dkx (15)

The 1-D temporal spectrum can also be computed by calculating only the temporal Fourier

transform and taking the streamwise and spanwise average. Plots of the results of these two

methods of calculation are indistinguishable. The 2-D temporal-spanwise-wavenumber spectrum

can also be computed in the same way as the 2-D temporal-streamwise-wavenumber spectrum

by substituting y for x, k_ for kx, and Lu for L_ in Eq. (11).

In the field of wall-pressure fluctuations, the function

T

<c/ >d(t)p(x,y,t)p(x + rl,t)exp(-ia, t)dt (16)
0

is commonly called the cross-spectral density. The cross-spectral density function is typically

computed by determining the full spatial-temporal spectrum and then applying inverse Fourier

transforms in the spatial directions. Corcos [3, 4] suggested expressions for the cross-spectral

density function r(_, _7,to) for cases in which _ = 0 or _/= 0. His expressions

F(_, 0, to) = ¢(to)A(a) exp (-is) (17)

and

r(0, =

are in terms of the similarity variables

(18)

- (19)



and
- (2o)

Note that ¢(w) - r(0, 0,w). The functions A and B are the coherence functions of the cross-

spectral densities. The convection velocity Uc can be thought of as the speed at which a pressure

disturbance of fixed frequency travels downstream. This speed is formally determined by

o = - tan- (rur,) (21)

where Fr and ri are the real and imaginary parts of r, respectively. Hence, the similarity

variable _ corresponds to the phase of the cross-spectral density. In practice, the convection

velocity is found to be a weak function of the separation distance _ and the frequency w. A

variety of different approaches have been employed to estimate Uc. Independent of the value of

Uc, the Corcos functions A and B are uniquely determined as

a = Ir( , (22)

and

B = Ir(o, (23)

Because of the homogeneity of the flow, no explicit dependence on the x and y locations needs
to be recited.

2.6 Numerical Accuracy

The computer code used for these calculations is a variant of the code used in the numerical

simulations of Zang and Hussalni [19]. The computations are spectrally accurate in the three

spatial directions. A hybrid time-advancement algorithm uses the Crank-Nicolson scheme on

the implicit portion and a third-order Runge-Kutta method for the explicit portion. Formally,

the hybrid scheme is second-order accurate in time. A fixed time step was used to facilitate the

use of fast Fourier transforms on the wall-pressure time series. To ensure that the maximum

CFL number remained within the stability bounds of the third-order Runge-Kutta method, the

time-step size was chosen so that the average CFL number was about 2i3 of the maximum
allowable size.

In addition to the usual code-validation tests that simulate Tollmien-Schlichting waves, typ-

ical turbulence quantities have been evaluated and found to be consistent with previous re-

searchers' results. The mean-flow profile and the rms turbulence intensities are shown in Fig. 1

and Fig. 2, respectively. The mean-flow profile contains a small log layer with the correct slope.

The turbulence intensity profiles are similar to those plotted in Fig. 3 of Piomelli [20].

The calculations described herein were performed on a mesh of 96 × 96 x 64 grid points in the

streamwise, spanwise, and wall-normal directions, respectively. The use of an average value of

0.0408U0 for the friction velocity determines the grid spacings in terms of viscous length scales.

Quantities normalized with the viscous scales uT and u/uT are denoted by a superscript +. The

streamwise and spanwise grid spacings are $x + = 6x(u,./u) = 66.7 and 6y + = $y(u_/u) = 21.3.

Because dealiasing is used in these two directions, the actual minimum resolved scales in the

strearnwise and spanwise directions are 100.1 and 31.9, respectively. The grid point nearest the

wall is at a location z + = 0.34. All grid spacings are well within the resolution guidelines for

turbulent LES set forth by Piomelli [20].
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Thegrit, zesolutionwasfurthercheckedbyrerunningaportionof the calculation with greater

grid resolution. The high-resolution sample was run on a 192 x 128 x 64 grid. The time-averaged
friction velocity is 0.0412, slightly higher than that which was calculated for the case of the

coarser grid. For an optimally run LES, a change in the grid resolution changes the definition

of what constitutes a large eddy. As the grid is refined, the SGS model accounts for less of the

turbulent activity. Figures 3(a) and 3(b) show the decomposition of the primary shear stress

components for the two different resolutions, respectively. Even in the coarse-grid case, the SGS

stress never accounts for more than 10 percent of the total stress. In the finer grid case, the SGS

model accounts for an even smaller portion of the stress. Increased resolution implies that more
of the turbulent motions will be included in the resolved turbulence and less will be absorbed

by the SGS model. This feature of LES implies that "grid independence" of an LES cannot be

established by the use of pointwise comparisons of flow fields at different grid resolutions. The

concept of grid independence of an LES can only be established in view of the objectives of
the particular calculation. In the present study, the objectives are to obtain certain statistical

correlations of the wall pressure. If these statistical quantities can be shown to be independent

of the grid used, then for the purposes of this study, the calculation is sufficiently well resolved.
Comparisons of the relevant statistics appear in section 3.

3 Results

3.1 Time-Averaged Quantities

The scalar statistics that characterize the global features of the wall-pressure fluctuations are

tabulated in Table 1. These data are averaged over both the spatial dimensions and time.

The low-resolution data are averaged over all 12 temporal subsections described above. The

high-resolution data are averaged over only two equivalent temporal subsections. The rms and

mean-square quantities are normalized with the time-averaged wall shear from the respective

calculations. The rms is computed as the square root of the mean square. The ± quantities

for mean square, skewness, and flatness are the standard deviations in the time sample of the
respective spatially averaged quantities.

Table 1: Time-Averaged Wall-Pressure Statistics

Simulation p,.m_lrw MSIr_ Skewness Flatness

High resolution 2.74 7.52 ± 0.34 -0.002 ± 0.082 4.74 ± 0.46

Low resolution 2.60 6.76 ± 0.71 0.036 ± 0.115 4.30 ± 0.51

The computed mean-square pressures are somewhat lower than the 8.54 value predicted by

Eq.(2) of Farabee and Casarella [9]. The greater level of the mean-square pressure computed

with the high-resolution LES suggests that the discrepancy could be a consequence of limited

spatial (and, hence, temporal) resolution of the LES. This possibility will be discussed more

fully below in relation to the spectra. Another possibility is that Eq.(2) of Ref. [9] overestimates

the mean-square pressure. Close inspection of the rms pressures in Fig. 2 of Ref. [9] reveals that

the data for Ret _< 1000 generally lies below the correlation of Farabee and Casarella [9]. The
data plotted in their Fig. 2 is replotted here as Fig. 4. The rms values from the current LES

calculations are included and are consistent with the experimental data.



In a boundary layer with Re6, = 1950, Schewe [7] found that the skewness attained a value of

approximately -0.2 with his smallest pressure transducer. When the diameter of the transducer

was as large as 75 wall units, the skewness was essentially 0 and remained 0 when measured

with larger transducers. Because the minimum resolved structure in the low-resolution LES has

a streamwise extent of approximately 100 wall units and a spanwise extent of approximately

32 wall units, the expected value of the skewness should be 0. Although the slightly positive

value of the skewness from the low-resolution calculation was unexpected, its near-zero value

could easily be a consequence of the limited time series, especially in view of the relatively large

value of the standard deviation of the skewness. The slightly negative value obtained with the

high-resolution LES is closer to 0 than would be expected from Schewe's data [7]; however,

the standard deviation is again large. In the turbulent channel-flow calculations of Chang,

Abraham, and Piomelli [10], the variation in the skewness exceeded 0.2, and one well-resolved

DNS computation had a positive skewness as large as 0.119; hence, the currently obtained values

are well within the skewness variation of the prior work.

The flatness values obtained from the calculations are somewhat less than those obtained in

the calculations of Ref. [10] and greater than what would be expected from Fig. 5 of Schewe

[7], based on the minimum resolved scales of the LES. The close agreement between the values

of the flatness for the two different resolutions used here and the similarly close agreement of

the flatness for all five calculations reported by Chang, Abraham, and Piomelli [10], point to a

possible Reynolds-number dependence of the flatness, with an approach to the Gaussian limit as

the Reynolds number increases. In any case, the values computed indicate that high-amplitude

infrequent events occur more often than what would be expected if the wall-pressure distribution

were entirely Gaussian.

The coherence functions of the two-point spatial correlations are plotted in Figs. 5 and 6 for

streamwise and spanwise separations, respectively. Although the general features of the coher-

ence are reproduced with both high- and low-resolution calculations, the details are dependent
on the resolution. Both calculations show that the streamwise correlation becomes and remains

slightly negative with separation distances greater than approximately 3.56 ° (i.e., about 500

wall units). This behavior is consistent with most of the low-speed data that was reviewed and

plotted by Bies [27]. However, with _+ < 150, a much smoother curve is obtained with the

high-resolution calculation. The low-resolution data appear to oscillate with a period of three

points. The reason for this oscillation is not yet known. The spanwise correlation distance is

much greater than the streamwise correlation distance. After a rapid decrease in the first few

displacement thicknesses, the coherence function becomes nearly flat, with a value of approxi-

mately 0.05. As with the streamwise coherence function, the initial decay of the coherence of

the high-resolution data is more severe than that of the low-resolution data. Although the same

general trend of the spanwise coherence function is indicated by Corcos [3, 4] and Bies [27], the

coherences of the data they plotted are generally slightly greater than either of the coherences

presented here. Because the data from the high-resolution simulation decay more rapidly than

the data from the low-resolution simulation, the slightly greater coherence from the experiments

plotted by Corcos [3, 4] and Bies [27] may be a consequence of inadequate spatial resolution in

the experiments.
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3.2 Spectra

3.2.1 1-D power spectral density

The 1-D power spectral densities as functions of frequency for both high- and low-resolution

calculations are plotted in Figs. 7(a) and (b). Figure 7(a) shows the spectral density normalized

with outer-flow variables; Figure 7(b) shows the same data normalized with inner flow variables.

The inner flow variables emphasize the high-frequency regime. Numerical roundoff error termi-

nates the decay of the spectra at similar levels for both grid resolutions. The data are consistent

with the findings of Schewe (see Fig. 10 in Ref. [7]); that is, the decay of the power spectral

density of larger pressure transducers (which correspond here to the low-resolution calculation)

occurs at a lower frequency and is steeper than the decay observed with smaller pressure trans-

ducers (which correspond here to the high-resolution calculation). The exponential decay that

was observed by Schewe [7] of the spectra at high frequencies is clearly observed here in Fig. 7(b).

In Fig. 7(a), the high-resolution calculation maintains significant levels of the spectral density

to a higher frequency than the low-resolution calculation. The higher mean-square pressure in

Table 1 for the high-resolution calculation is at least partly a consequence of the extra high-

frequency power that is resolved with the finer grid.

Farabee and CasareUa [9] distinguish three regimes in the pressure spectral density. Their

low-frequency regime where the spectrum scales with w 2, occurs with w$*/Uo < 0.03. For the

computed flow, this corresponds to w_5*/Ur < 0.75. Such a small frequency is below the frequency

resolution in the calculation, so the lack of an w_ regime is not surprising. The high-frequency

regime observed by Farabee and Casarella [9] decays rapidly with frequency. This regime also

exists in the current calculations and is clearly seen in Figs. 7(a) and 7(b). The maximum in

the spectra occurs in the mid-frequency regime. The data of Farabee and Casarella [9] show

that the maximum occurs at w_5/U.r = 50, which corresponds to wt_*/u_. _ 6.5 in the computed

flow. Figure 7(a) and the supporting LES data suggest that, for both resolutions, the global

maximum is w_5"/u_ _, 2.2 and a secondary maximum exists in the vicinity of w_5*/u_. _ 5.6.

The discrepancy between the LES and the experiments as to the frequency of the maximum

might be attributable to the streamwise-domain size of the calculation. If a disturbance with

the frequency wt_*/u_ = 2.2 travels with a convection velocity of Uc/u_- = 16.5 (a reasonable

value), then the wavelength of the disturbance would closely approximate the length of the

computational domain. Because the computational domain is periodic, disturbances that have

the appropriate combination of frequency and convection velocity (such that the wavelength

equals the length of the streamwise domain), will be perfectly correlated. Chang, Abraham, and

Piomelli [10] note that a similar anomalous peak in the spectrum appears in their simulation that

has the shortest streamwise domain. A careful study of their data also reveals the presence of

spectral peaks at frequencies associated with the domain size for most of their other simulations.

Only their calculation with the longest streamwise domain does not show a local peak at the

relevant frequency. In this case however, the spectrum does not exhibit the anticipated decrease

in amplitude at the relevant frequency; hence, even in this calculation, the amplitude of the

spectrum at a particular frequency appears to be contaminated by a numerical artifact. A

future computation will be performed to further clarify this issue. However, in all cases, the

numerically introduced error appears to be narrowly confined in frequency space and the bulk
of the results are reliable.
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3.2.2 2-D frequency-streamwise-wavenumber spectral density

Contours of the spectral density as functions of the frequency and streamwise wavenumber are

plotted for the low-resolution simulation in Fig. 8 and for the high-resolution calculation in

Figs. 9(a) and 9(b). All resolved wavenumbers are included in Figs. 8 and 9(a). In Fig. 9(b),
the data from the high-resolution calculation are plotted for the same range of wavenumbers

and frequencies that was used for the plot of the low-resolution data in Fig. 8. The convective

ridge can easily be identified in all plots as the elongated crest of maximum spectral density in
frequency-streamwise-wavenumber space. The slope of this crest is often used as a measure of

the convection velocity Uc. The considerably smoother contours in Fig. 8 relative to those in

Figs. 9(a) and 9(b) are a consequence of the more extensive time sample that was available for

the low-resolution calculation. The small power buildups around the zero wavenumber that are

observed at high frequencies were also observed in the calculations of Choi and Moin [6] and

Chang, Abraham, and Piomelli [10]. The meaning of the power buildups is not clear, but the

very small amplitude and the high frequency at which they first become noticeable suggests that
they have minimal impact on the quantities of concern here.

The connection between the spatial and temporal resolutions can be investigated through a

comparison of Figs. 8 and 9(a). Because power is concentrated in the convective ridge, estimation

of the temporal spectral density is only accurate up to those frequencies for which the convective

ridge is spatially resolved. At higher frequencies, the convective ridge will be incomplete or will

be missing entirely. Hence, the temporal spectral densities at these higher frequencies will lack

a significant component of power that should be included. Figure 8 shows that resolution of

the convective ridge to the -30-dB contour occurs up to a frequency of w_*/u_ ,_ 27. In the
high-resolution calculation, Fig. 9(a) shows that the resolution of the -30-dB contour extends

up to w6*/ur _ 75. At higher frequencies, a significant portion of the power in the convective

ridge will not be included in the estimate of temporal power spectral density.

Careful comparison of Figs. 8 and 9(b) indicates that the crest of the convective ridge is
accurately computed in the low-resolution simulation up to the limit of the maximum streamwise

wavenumber. However, away from the crest, the low-resolution calculation experiences a more

rapid decrease in power than the high-resolution calculation. The cause of this phenomenon is
not clear.

3.2.3 Streamwise cross-spectral density

The streamwise coherence of the cross-spectral density function can be studied as a function of

the phase a = w_/Uc. The phase can be altered by varying either the frequency or the separation

distance. In Figs. 10(a) and 10(b), each line represents the coherence of the cross-spectral density
for a fixed separation distance _/6 °. In the low-resolution case, the smallest separation distances

show steep increases in the coherence for their highest frequencies. These steep increases are

artifacts of the limited spatial resolution. Although some scatter exists, except for the smallest

separation distances the high-frequency data form a curve that is independent of separation

distance. The thick solid line in the figures is the function exp(-cl[w_/UcD, where the value of

cl is chosen to be 0.145, which is the same value used by Farabee and Casarella [9] at a slightly

greater Reynolds number. Note that in Figs. 10(a) and 10(b), as w_/Uc _ O, the coherence does

not uniformly tend to unity. Instead, the coherence is rapidly reduced with a different zero-

frequency level attained by each separation distance. Farabee and Casarella [9] also observed
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this behavior for data at low frequencies. For coherence to be maintained at the low frequencies,

the low-frequency pressure field would need to remain correlated over enormous streamwise

distances. As Farabee and CasareUa [9] state, "This would require that the turbulence activities

producing the wall pressure fluctuations convect over equally long distances without becoming

distorted by the mean velocity gradient or turbulence mixing in the flow."

The coherence versus phase relationship can also be studied by plotting lines of constant fre-

quency while the separation distance varies. In this representation, as _ _ 0 the coherence must

tend toward unity. Figures ll(a) and ll(b) show the coherence of lines of constant frequency

for the high- and low-resolution data. The thick solid line is again the function exp(-cllw_/Ucl)

with the value of cl chosen to be 0.145. The high-frequency curves of the low-resolution data

show significant departures from the rest of the data. However, the five highest frequencies are all

above the intercept of the -30-dB contour with the maximum resolved streamwise wavenumber,

as can be seen in Fig. 8; hence, at best the five highest frequencies are marginally resolved. In the

high-resolution data, all frequencies shown are adequately resolved. Farabee and Casarella [9]

observed a slight increase in the decay rate with an increase in frequency; Figure ll(a) pro-

vides some support for this conclusion. In addition, they observed a low-frequency cutoff of

w_/ur = 50, below which the coherence curves were no longer similar. Because _ _ 8_*, the

curves that represent the lowest frequency (circles) in Figs. ll(a) and (b) are well below the cut-

off. The behavior of the low-frequency curves with respect to the "universal" curve is consistent

with the observations of Farabee and CasareUa [9].

3.2.4 Convection velocity

The convection velocity can be determined from the phase of the streamwise cross-spectral den-

sity as Uc = w_/a. For the two resolutions used, Figs. 12(a) and 12(b) illustrate the dependence

of the convection velocity on separation distance for a variety of different frequencies that are at

least marginally resolved. The lowest sampled frequency, w$*/u_.._ 1.12, has an unusually low

convection velocity. However, this frequency is below the cutoff frequency for similarity; hence,

the anomalous behavior is not unexpected. In the limit of zero separation distance, the convec-

tion velocity for most of the frequencies tends toward a value between 0.55U0 (approximately

13.3ur) and 0.60/./0 (approximately 14.5ur). These values are approximately 10 percent less than

the values obtained by Farabee and Casarella [9] at a Reynolds number that is approximately 10

percent greater than the Reynolds number of the computation. Their convection velocities for

zero separation at another, greater Reynolds number are even higher, although not by the same

proportion. Because the convection velocity is limited by the free-stream speed, any monotonic

Reynolds-number dependence must eventually asymptote to some value, although what that
value should be is not clear from the data.

The convection velocity generally increases slowly with increasing separation distance. This

trend is clearly seen in Figs. 13(a) and 13(b), which show the convection velocities as functions

of frequency for different separation distances. The thick solid line is an estimate of the _ = 0

curve. This curve was obtained through the use of L'Hospital's rule; that is,

_---,0 o_ _:0

where 0a/0_ was computed with second-order forward differences. The curves with _/$* = 0.467

are almost identical to the extrapolated _ = 0 curves. The trend of increasing convection velocity
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with separation distance is also observed by Farabee and Casarella [9]. The higher frequency

data are poorly resolved in the low-resolution calculation. For small separation distances, the

almost linear growth of the convection velocity with frequency is a direct consequence of the

spatial resolution limitations in the streamwise direction.

3.2.5 Spanwise cross-spectral density

The spanwise cross-spectral density is essentially a real-valued function; hence, a plot of co-

herence versus the phase would not be useful. Corcos [3, 4] suggested that a similarity variable

o_}/Uc would collapse the coherence data. Although Uc (as derived from the phase of the stream-

wise cross-spectral density) depends weakly on both the streamwise separation distance and the

frequency (for use in forming the spanwise similarity variable), Uc can be approximated by its

dependence on the frequency with zero streamwise separation.

As with the streamwise cross-spectral density, the similarity variable v_/Uc can be varied

by changing either the frequency or the separation distance and holding the other fixed. Fig-

ures 14(a) and 14(b) show curves of spanwise coherence for various spanwise separations as

functions of the frequency. The coherence as _ --* 0 clearly show a strong decrease for the low-

resolution calculation; for the high-resolution calculation, the data shows a great deal of jitter

in this region. The thick solid line represents a curve exp(-0.8 wT}/Uc). This curve seems to

overestimate the coherence for low values of o_}/Uc and underestimate the coherence for high

values of w_//Uc_ hence, a simple exponential does not fit these data well. Figures 15(a) and

15(b) show curves of spanwise coherence for various frequencies as functions of the spanwise

separation. The lowest frequency curves show significant departures from the remaining curves.

Similar behavior of the low-frequency data was observed for the streamwise cross-spectral den-

sity in Figs. ll(a) and ll(b). The same exponential curve fit that was used in Figs. 14(a) and

14(b) is inadequate here also.

In Figs. 16(a), 16(b), and 17(a), and 17(b) a new single parameter curve is introduced that

provides a better fit to the data. Rather than an exponential function, the modified inverse

square function C_,/[C_ + (_r}/Uc) 2] is used. A value Ca = 0.9 produces the thick solid curve in

the figures. For low values of the similarity parameter, the function was chosen to better fit the

cases in which _}--+ 0 (for which the correct asymptotic behavior is known) rather than _ _ 0.

Because the function involves just one parameter, the allowance of the parameter Ca to be a

function of the flow conditions might lead to straightforward curve fitting of similar data are

collected under different conditions (e.g., different Reynolds numbers or pressure gradients).

4 Conclusions

Statistical properties of the wall-pressure fluctuations were investigated for a turbulent boundary

layer with Re6. = 3500. The data were produced by large-eddy simulation with two different

grid resolutions. Although the global flow properties were quite similar, the high-resolution cal-

culation more accurately captured higher temporal frequencies of the wall-pressure fluctuations.

However, the increased time series available with the low-resolution calculation considerably

decreased the jitter in a number of plots in comparison with the high-resolution computation.

The globally averaged quantities of mean-square wall pressure, skewness, and flatness for

the two resolutions have values that are approximately within a single standard deviation of
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each other. The actual values reveal that the distribution of wall-pressure is not Ganssian; the

occurrence of large-amplitude wall-pressure events is more likely than would be expected for a

Gaussian distribution. This conclusion is in accordance with those of previous experiments and
calculations.

The coherence of the time-averaged two-point correlations behaves similarly for both resolu-

tions although the streamwise correlation computed with low resolution has a small-amplitude

three-point oscillation while the correlation computed with high resolution is smooth. The

coherence functions from both resolutions become and remain slightly negative for distances

greater than about 3.5_f*. The spanwise two-point correlations are considerably broader with no

apparent oscillations with either the low- or high-resolution calculations.

The one-dimensional frequency spectra are generally consistent with previous experimental

and computational studies. An artificial peak in the spectrum at w_f*/u_ _ 2.2 is probably an

artifact of the length of the computational domain. Discrepancies associated with this computa-

tional issue appear to be narrowly confined in frequency space. The results with the coarser grid

resolution are similar to results that are obtained with larger sized transducers in physical ex-

periments. Spectra plotted as functions of frequency and streamwise wavenumber show that the

crest of the convective ridge is resolved to the highest streamwise wavenumber available in both

calculations. The decay of the spectra away from the ridge is more rapid in the low-resolution

calculation than in the high-resolution calculation.

The coherences of the cross-spectral density functions have similar forms in both calculations.

The streamwise and spanwise coherence functions are smoother when lines of constant frequency

are considered, and the independent variable varies due to changes in the separation distances.

Farabee and Casarella [9] suggest that a low-frequency cutoff of w_f*/Ur ._ 6.5 determines the

lower limit for the similarity behavior of the cross-spectral density. This value of the cutoff is

consistent with the data presented here. The similarity curve for the streamwise coherence is

fit quite well by an exponential with the same decay rate used by Farabee and Casarella [9] in

their experimental studies (with a slightly greater Reynolds number). The spanwise coherence

could not be fit with a simple exponential function. Instead, a single-parameter modification to

an inverse-square function was developed to fit the data. The parameter can be made a function

of the flow conditions. Future work will help determine its value for other flow conditions.

The calculations reveal that the genera] results from the low-resolution calculations are con-

sistent with those of the higher resolution calculation, especially when attention is confined to

the frequency range that is most important for structural vibrations of an aircraft fuselage.
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Figure 13. Convection velocity as function of frequency for different separation distances. Solid

line represents extrapolation to _/6" = 0.0. o _/6" = 0.47; = _/6" = 2.34; A _/6" = 4.21;

o _/6" = 6.08; _>_/6" = 7.95.
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Figure 14.Spanwise coherence of cross-spectral density. Thick line is exp(-O.8[w'1/Uc[). Sym-

bols are curves for different separation distances, o '1/6" - 0.45; o '1/6" - 0.89;

A '1/6" = 1.34; o ,//6* = 1.79; c, '1/6" = 2.23; <>'1/6" = 2.68; • '1/6" = 3.12; x '1/6" = 3.57;
+ ,I/6" = 4.02.
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(a) High resolution, o w6*/u_. = 1.11; o w6*/u_. = 6.67; A w_f*/u_. = 12.23; o w_f*/ur = 17.79;

t, w6*/ur = 23.35; (> w_5*/u_. = 28.91; * w_f*/ur = 34.47; × w6*/u_. = 40.03; + w_*/u., =

45.59; * w_*/u,r = 51.15.
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(b) Low resolution, o w6*/u_. = 1.12; o w_f*/u_. = 6.74; A w_f*lu_. = 12.35; o w_f*lur = 17.97;

t, w_f*/u,, = 23.58; 0 w_f*/u_. = 29.20;, w_5*/u_. = 34.81; x w$*/u_. = 40.42; + w_5*/u_. =

46.04; • w_f*/u_. = 51.65.

Figure 15. Spanwise coherence of cross-spectral density. Thick line is exp(-0.slwv/Vol). Sym-

bols axe curves for different frequencies.
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(a) High Resolution.
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(b) Low resolution.

Figure 16. Spanwise coherence of cross-spectral density. Thick line is 02,1[c2,+ (_,71uo)21
with O8 = 0.9. Symbols are curves for different separation distances, o _//_* = 0.45;

o 7/5" = 0.89; A y/6* = 1.34; o ?//6" = 1.79; _ y/_* = 2.23; <>_?/6" = 2.68; • y/S" = 3.12;

x _/6" = 3.57; + ??/6* = 4.02.
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(a) High resolution, o w_f*/u_ = 1.11; o w6*/ur = 6.67; _ wlf*/ur = 12.23; o w_f*/ur = 17.79;

_, w6*/u_ = 23.35; <>w6*/ur = 28.91; * w_f*/u_, = 34.47; x w6*/ur = 40.03; + w_*/u_ =

45.59; * w_f*/u_ = 51.15.
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(b) Low resolution, o w6*/u,_ = 1.12; o w6*/u_ = 6.74; A w_f*/u_ = 12.35; <>w_f*/u_ = 17.97;

_, w6*/u_ = 23.58; <>w6*/u_ = 29.20; • w_f*/u_ = 34.81; x w_f*/u_ = 40.42; + w6*/u_ =

46.04; • ¢o_f*/u_ = 51.65.

Figure 17. Spanwise coherence of cross-spectral density. Thick line is C_/[C_ ÷ (w_}/Uc) 2] with

C, = 0.9. Symbols are curves for different frequencies.
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